list 4 séquences
assignment Niveau : Intermédiaire
chat_bubble_outline Langue : Anglais
language Sous titrage : Grec, Espagnol
card_giftcard 400 points
Avis de la communauté

Les infos clés

credit_card Formation gratuite
verified_user Certification payante
timer 40 heures de cours

En résumé

Experienced Computer Scientists analyze and solve computational problems at a level of abstraction that is beyond that of any particular programming language. This two-part course builds on the principles that you learned in our Principles of Computing course and is designed to train students in the mathematical concepts and process of "Algorithmic Thinking", allowing them to build simpler, more efficient solutions to real-world computational problems. In part 1 of this course, we will study the notion of algorithmic efficiency and consider its application to several problems from graph theory. As the central part of the course, students will implement several important graph algorithms in Python and then use these algorithms to analyze two large real-world data sets. The main focus of these tasks is to understand interaction between the algorithms and the structure of the data sets being analyzed by these algorithms. Recommended Background - Students should be comfortable writing intermediate size (300+ line) programs in Python and have a basic understanding of searching, sorting, and recursion. Students should also have a solid math background that includes algebra, pre-calculus and a familiarity with the math concepts covered in "Principles of Computing".

more_horiz Lire plus
more_horiz Lire moins

Le programme

  • Week 1 - Module 1 - Core Materials
    What is Algorithmic Thinking?, class structure, graphs, brute-force algorithms
  • Week 2 - Modules 1 - Project and Application
    Graph representations, plotting, analysis of citation graphs
  • Week 3 - Module 2 - Core Materials
    Asymptotic analysis, "big O" notation, pseudocode, breadth-first search
  • Week 4 - Module 2 - Project and Application
    Connected components, graph resilience, and analysis of computer networks

Les intervenants

Luay Nakhleh
Associate Professor
Computer Science; Biochemistry and Cell Biology

Scott Rixner
Computer Science

Joe Warren
Computer Science


Le concepteur

Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the top 20 universities in the U.S. and the top 100 in the world. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy.

La plateforme


Coursera est une entreprise numérique proposant des formations en ligne ouverte à tous fondée par les professeurs d'informatique Andrew Ng et Daphne Koller de l'université Stanford, située à Mountain View, Californie.

Ce qui la différencie le plus des autres plateformes MOOC, c'est qu'elle travaille qu'avec les meilleures universités et organisations mondiales et diffuse leurs contenus sur le web.

Vous êtes le concepteur de ce MOOC ?
Quelle note donnez-vous à cette ressource ?