link Source: www.edx.org
list 10 sequences
assignment Level : Intermediate
chat_bubble_outline Language : English
card_giftcard 300 points
Logo My Mooc Business

Top companies choose Edflex to build in-demand career skills.

Get started
Users' reviews
-
starstarstarstarstar
0 reviews

Key Information

credit_card Free access
verified_user Fee-based Certificate
timer 30 hours in total

About the content

This course is about the Laplace Transform, a single very powerful tool for understanding the behavior of a wide range of mechanical and electrical systems: from helicopters to skyscrapers, from light bulbs to cell phones. This tool captures the behavior of the system and displays it in highly graphical form that is used every day by engineers to design complex systems.

This course is centered on the concept of the transfer function of a system. Also called the system function, the transfer function completely describes the response of a system to any input signal in a highly conceptual manner. This visualization occurs not in the time domain, where we normally observe behavior of systems, but rather in the “frequency domain.” We need a device for moving from the time domain to the frequency domain; this is the Laplace transform.

We will illustrate these principles using concrete mechanical and electrical systems such as tuned mass dampers and RLC circuits.

The five modules in this series are being offered as an XSeries on edX. Please visit the Differential EquationsXSeries Program Page to learn more and to enroll in the modules.

---

Please note: edX Inc. has recently entered into an agreement to transfer the edX platform to 2U, Inc., which will continue to run the platform thereafter. The sale will not affect your course enrollment, course fees or change your course experience for this offering. It is possible that the closing of the sale and the transfer of the edX platform may be effectuated sometime in the Fall while this course is running. Please be aware that there could be changes to the edX platform Privacy Policy or Terms of Service after the closing of the sale. However, 2U has committed to preserving robust privacy of individual data for all learners who use the platform. For more information see the edX Help Center.

You’ll learn how to:

  • Pass back and forth between the time domain and the frequency domain using the Laplace Transform and its inverse.
  • Use a toolbox for computing with the Laplace Transform.
  • Describe the behavior of systems using the pole diagram of the transfer function.
  • Model for systems that have feedback loops.
  • Model sudden changes with delta functions and other generalized functions.

more_horiz Read more
more_horiz Read less
dns

Syllabus

  • Review of differential equations
  • System function and frequency response
  • Laplace Transform
  • Rules and applications
  • Impulses and impulse response
  • Convolution
  • Feedback and filters
record_voice_over

Instructors

Haynes Miller
Professor of Mathematics
Massachusetts Institute of Technology

Jeremy Orloff
Lecturer
Massachusetts Institute of Technology

Jennifer French
Digital Learning Scientist and Lecturer
Massachusetts Institute of Technology

Duncan Levear
Postdoctoral Associate/DLL
Massachusetts Institute of Technology

store

Content Designer

MIT

MIT is a world-class educational institution where teaching and research — with relevance to the practical world as a guiding principle — continue to be its primary purpose.

MIT is independent, coeducational, and privately endowed. Its five schools and one college encompass numerous academic departments, divisions and degree-granting programs, as well as interdisciplinary centers, laboratories and programs whose work cuts across traditional departmental boundaries.

assistant

Platform

Edx

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
5/5
Platform
5/5
Animation
5/5