list 11 sequences
assignment Level : Introductive
chat_bubble_outline Language : English
card_giftcard 1320 points
Users' reviews
-
starstarstarstarstar

Key information

credit_card Free access
verified_user Free certificate
timer 165 hours in total

About the content

In this class, you will learn the basics of the PGM representation and how to construct them, using both human knowledge and machine learning techniques.

more_horiz Read more
more_horiz Read less
dns

Syllabus

Topics covered include:

  1. The Bayesian network and Markov network representation, including extensions for reasoning over domains that change over time and over domains with a variable number of entities
  2. Reasoning and inference methods, including exact inference (variable elimination, clique trees) and approximate inference (belief propagation message passing, Markov chain Monte Carlo methods)
  3. Learning parameters and structure in PGMs
  4. Using a PGM for decision making under uncertainty.

There will be short weekly review quizzes and programming assignments (Octave/Matlab) focusing on case studies and applications of PGMs to real-world problems:

  1. Credit Scoring and Factors
  2. Modeling Genetic Inheritance and Disease
  3. Markov Networks and Optical Character Recognition (OCR)
  4. Inference: Belief Propagation
  5. Markov Chain Monte Carlo and Image Segmentation
  6. Decision Theory: Arrhythmogenic Right Ventricular Dysplasia
  7. Conditional Random Field Learning for OCR
  8. Structure Learning for Identifying Skeleton Structure
  9. Human Action Recognition with Kinect

To prepare for the class in advance, you may consider reading through the following sections of the textbook (discount code DKPGM12) by Daphne and Nir Friedman:

  1. Introduction and Overview. Chapters 1, 2.1.1 - 2.1.4, 4.2.1.
  2. Bayesian Network Fundamentals. Chapters 3.1 - 3.3.
  3. Markov Network Fundamentals. Chapters 4.1, 4.2.2, 4.3.1, 4.4, 4.6.1.
  4. Structured CPDs. Chapters 5.1 - 5.5.
  5. Template Models. Chapters 6.1 - 6.4.1.

These will be covered in the first two weeks of the online class.

The slides for the whole class can be found here.

record_voice_over

Instructors

  • Daphne Koller - School of Engineering
store

Content designer

Stanford University
The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States.
assistant

Platform

Coursera

Coursera is a digital company offering massive open online course founded by computer teachers Andrew Ng and Daphne Koller Stanford University, located in Mountain View, California. 

Coursera works with top universities and organizations to make some of their courses available online, and offers courses in many subjects, including: physics, engineering, humanities, medicine, biology, social sciences, mathematics, business, computer science, digital marketing, data science, and other subjects.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
0/5
Platform
0/5
Animation
0/5