link Source: www.edx.org
date_range Starts on January 25, 2016
event_note Ends on March 19, 2016
list 8 sequences
assignment Level : Introductory
chat_bubble_outline Language : English
card_giftcard 1 point
Users' reviews
-
starstarstarstarstar
0 reviews

Key Information

credit_card Free access

About the content

The transistor has been called the greatest invention of the 20th century – it enables the electronics systems that have shaped the world we live in. Today’s nanotransistors are a high volume, high impact success of the nanotechnology revolution. If you are interested in understanding how this scientifically interesting and technologically important nano-device operates, this course is for you!

This nanotechnology course provides a simple, conceptual framework for understanding the essential physics of nanoscale transistors.  It assumes only a basic background in semiconductor physics and provides an opportunity to learn how some of the fascinating new discoveries about the flow of electrons at the nanoscale plays out in the context of a practical device.

The course is divided into four units:

  • Transistors fundamentals
  • Transistor electrostatics
  • Ballistic MOSFETs
  • Transmission theory of the MOSFET

The first two units provide an introduction for students with no background in transistors or a quick review for those familiar with transistors.  The third unit treats the ballistic transistor in which electrons move without resistance (in the traditional sense). The last unit uses that Landauer Approach to electron transport, which was developed to understand some striking experiments in nanophysics, to develop an understanding of how electrons flow in modern nanotransistors.  This short course describes a way of understanding MOSFETs that is much more suitable than traditional approaches when the channel lengths are of nanoscale dimensions. Surprisingly, the final result looks much like the traditional, textbook, MOSFET model, but the parameters in the equations have simple, clear interpretations at the nanoscale.

My objective for this course is to provide students with an understanding of the essential physics of nanoscale transistors as well as some of the practical technological considerations and fundamental limits. The goal is to do this in a way that is broadly accessible to students with only a very basic knowledge of semiconductor physics and electronic circuits. The course is designed for anyone seeking a sound, physical, but simple understanding of how nanoscale transistors operate. The course should be useful for advanced undergraduates, beginning graduate students, as well as researchers and practicing engineers and scientists.

This course is the latest in a series offered by the nanoHUB-U project which is jointly funded by Purdue and NSF with the goal of transcending disciplines through short courses accessible to students in any branch of science or engineering. These courses focus on cutting-edge topics distilled into short lectures with quizzes and practice exams.

more_horiz Read more
more_horiz Read less
dns

Syllabus

  • Transistor fundamentals (IV characteristics and device metrics)
  • MOS electrostatics (in one and two dimensions)
  • The Landauer Approach to electron transport
  • The transmission theory of the MOSFET and its relation to traditional and Virtual Source transistor models
record_voice_over

Instructors

  • Mark Lundstrom
  • Piyush Dak
  • Evan Witkoske
store

Content Designer

Purdue University

Purdue University is a world-renowned, public research university that advances discoveries in science, technology, engineering and math.

assistant

Platform

Edx

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
5/5
Platform
5/5
Animation
5/5