link Source: www.edx.org
date_range Starts on February 13, 2023
event_note Ends on March 27, 2023
list 5 sequences
assignment Level : Advanced
chat_bubble_outline Language : English
card_giftcard 560 points
Users' reviews
-
starstarstarstarstar
0 reviews

Key Information

credit_card Free access
verified_user Fee-based Certificate
timer 40 hours in total

About the content

This course is an introduction to photonic materials and devices structured on the wavelength scale. Generally, these systems will be characterized as having critical dimensions at the nanometer scale. These can include nanophotonic, plasmonic, and metamaterials components and systems.

This course will aim to introduce students to computational techniques employed in current design and research efforts in nanophotonics. You will learn the strengths and weaknesses of each approach; what types of problems call for which one; and how your simulation will perform.

Techniques include eigenvalue problems, fast Fourier transforms, band structure calculations, rigorous-coupled wave analysis, and finite-difference time-domain. Applications include photovoltaics, thermal management, radiative control, and nonlinear optics. It is expected to be useful for graduate students interested in incorporating these techniques into their projects or thesis research.

Students taking this course will be required to complete four (4) proctored exams using the edX online Proctortrack software. Completed exams will be scanned and sent using Gradescope for grading by Professor Bermel.

Recommended Textbook for the course:
Photonic Crystals: Molding the Flow of Light by J.D. Jaonnopoulos, S.G.Johnson, J.N. Winn, and R.B. Meade, Princeton University Press, 2008
ISNB Number: 9780691224568

Nanophotonic Modeling is one course in a growing suite of unique, 1-credit-hour short courses being developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters program in Nanoscience and Technology. For further information and other courses offered and planned, please see the Nanoscience and Technology page.

Courses like this can also apply toward a Master's Degree in Electrical and Computer Engineering for students accepted into the full master’s program at Purdue University.

  • Photonic bandstructures
  • Transfer matrices
  • Time-domain simulations
  • Finite-element methods

more_horiz Read more
more_horiz Read less
report_problem

Prerequisite

  • This course is intended for audiences with a background in the physical sciences or engineering.
  • Basic familiarity with the principles of Maxwell's equations, covered in a first year class on physics, is needed.
  • Some working knowledge of integral and vector calculus, as well as basic linear algebra, is assumed.
  • Prior experience with basic programming techniques and algorithms is useful but not strictly required; pointers to web-based resources covering these background topics will be available.

dns

Syllabus

Week 1: Photonic Bandstructures

  • Bloch Theorem
  • 1D Bandstructures
  • 2D Bandstructures
  • Photonic Crystals

Week 2: Photonic Bandstructures (continued)

  • Photonic Crystals
  • Photonic Bandstructure
  • Simulation using MIT Photonic Bands (MPB)

Week 3: Transfer Matrices

  • Ray Optical Matrices
  • Wave Optics Transfer Matrices
  • Wave Optics S-Matrices
  • Photonic Simulations
  • CAMFR
  • Metasurfaces

Week 4: Time-Domain Simulations

  • Finite Difference Time Domain Method
  • MEEP: An FDTD Solver
  • Light Trapping in Photovoltaics
  • Using MEEP
  • MEEP Resonators
  • MEEP: Photonic Bandstructures
  • FDTD Validation Against Experiment
  • Local Density of States

Week 5: Finite-Element Methods

  • Simulating Bandstructures in FDTD
  • Beam Propagation Method
  • Finite Element Method (FEM)
  • An FEM Waveguide Mode Solver
  • Thermal Transport
  • FEM Modeling
  • Blackbody Radiation
record_voice_over

Instructors

Peter Bermel
Associate Professor, Electrical & Computer Engineering
Purdue University

store

Content Designer

Purdue University

Purdue University is a public university located in West Lafayette, Tippecanoe County, Indiana, USA.

It was founded on 6 May 1869 and in 2012 had over 39,000 students. It is known as the "Cradle of Astronauts" for having trained twenty-two future astronauts, including Neil Armstrong and Eugene Cernan. Many of the CEOs of Forbes 500 companies also graduated from Purdue University.

assistant

Platform

Edx

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
5/5
Platform
5/5
Animation
5/5