Mechanics of Deformable Structures: Part 2

Mechanics of Deformable Structures: Part 2

Archived
Course
en
English
80 h
This content is rated 0 out of 5

You can't access an archived course

More info
  • 8 Sequences
  • Intermediate Level
  • Starts on June 8, 2020
  • Ends on July 28, 2020

You can't access an archived course

Their employees are learning daily with Edflex

  • Safran
  • Air France
  • TotalEnergies
  • Generali
Learn more

Course details

Syllabus

Unit 0: Review of Prerequisites. Integration of field variables. Introduction to MATLAB. Review of 2.01x: structural elements in axial loading, torsion, bending. Review of 2.02.1x: equilibrium and compatibility in 2D elastic assemblages.

Unit 1: Multi-axial stress and strain. The (nominal) stress tensor, the (small) strain tensor. Hooke’s law for linear isotropic elastic materials. Plane stress. Pressure vessels: components of stress and strain in cylindrical coordinates. Stress and strain states from superposition of loading conditions and kinematic constraints: applications to homogeneous states, pressure vessels, bars, shafts, beams.

Unit 2: Failure theories. Cauchy Result: traction vector. Stress and strain transformation and principal components of stress and strain. Principal directions and invariants. Design limits on multiaxial stress: design against fracture for brittle materials and design against plastic yielding for ductile materials (Tresca, Mises).

Quiz 1 (on Units 1 and 2)

Unit 3: Elastic Strain Energy and Castigliano’s theorems. Elastic strain energy; complementary energy. Castigliano’s second theorem to solve for kinematic degrees of freedom. Applications to assemblages of structural elements in axial loading, torsion and bending.

Unit 4: Minimum Potential Energy methods. Total potential energy of loaded structure. Equilibrium conditions. Applications to statically indeterminate trusses. Approximate solutions. Trial functions and the Rayleigh Ritz method. Applications to structural assemblages with bars, beams and shafts.

Quiz 2 (on Units 3 and 4)

Prerequisite

Multivariable Calculus

(Derivatives, Integrals (1D, 2D))

Physics: Classical Mechanics

(Vectors, Forces, Torques, Newton’s Laws)

(axial loading, torsion, bending in linear elastic structures)

Instructors

David Parks
Professor, Department of Mechanical Engineering
MIT

Simona Socrate
Senior Lecturer, Department of Mechanical Engineering
MIT

Platform

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

This content is rated 4.5 out of 5
(no review)
This content is rated 4.5 out of 5
(no review)
Complete this resource to write a review