Mechanics of Deformable Structures: Part 2
date_range Starts on June 9, 2020
event_note End date July 29, 2020
list 8 sequences
assignment Level : Intermediate
chat_bubble_outline Language : English
card_giftcard 800 points
Logo My Mooc Business

Top companies choose Edflex to build in-demand career skills.

Get started
Users' reviews
-
starstarstarstarstar

Key Information

credit_card Free access
verified_user Fee-based Certificate
timer 80 hours in total

About the content

In this course: (1) you will learn to model the multi-axial stress-strain response of isotropic linear elastic material due to combined loads (axial, torsional, bending); (2) you will learn to obtain objective measures of the severity of the loading conditions to prevent failure; (3) you will learn to use energy methods to efficiently predict the structural response of statically determinate and statically indeterminate structures.

This course will give you a foundation to predict and prevent structural failure and will introduce you to energy methods, which form one basis for numerical techniques (like the Finite Element Method) to solve complex mechanics problems

This is the third course in a 3-part series. In this series you will learn how mechanical engineers can use analytical methods and “back of the envelope” calculations to predict structural behavior. The three courses in the series are:

Part 1 – 2.01x: Elements of Structures. (Elastic response of Structural Elements: bars, shafts, beams).

Part 2 – 2.02.1x Mechanics of Deformable Structures: Part 1. (Assemblages of Elastic, Elastic-Plastic, and Viscoelastic Structural Elements).

Part 3 – 2.02.2x Mechanics of Deformable Structures: Part 2. (Multi-axial Loading and Deformation. Energy Methods).

These courses are based on the first subject in solid mechanics for MIT Mechanical Engineering students. Join them and learn to rely on the notions of equilibrium, geometric compatibility, and constitutive material response to ensure that your structures will perform their specified mechanical function without failing.

  • Hooke’s law for isotropic linear elastic materials and homogeneous problems in linear elasticity. Pressure vessels. Superposition of loading conditions.
  • Traction on a face. Stress transformation. Principal stress components. Stress and strain invariants. Tresca and Mises yield criteria.
  • Elastic strain energy. Castigliano methods. Potential energy formulations. Approximate solutions and the Rayleigh Ritz method

more_horiz Read more
more_horiz Read less
report_problem

Prerequisite

Multivariable Calculus

(Derivatives, Integrals (1D, 2D))

Physics: Classical Mechanics

(Vectors, Forces, Torques, Newton’s Laws)

2.01x

(axial loading, torsion, bending in linear elastic structures)

dns

Syllabus

Unit 0: Review of Prerequisites. Integration of field variables. Introduction to MATLAB. Review of 2.01x: structural elements in axial loading, torsion, bending. Review of 2.02.1x: equilibrium and compatibility in 2D elastic assemblages.

Unit 1: Multi-axial stress and strain. The (nominal) stress tensor, the (small) strain tensor. Hooke’s law for linear isotropic elastic materials. Plane stress. Pressure vessels: components of stress and strain in cylindrical coordinates. Stress and strain states from superposition of loading conditions and kinematic constraints: applications to homogeneous states, pressure vessels, bars, shafts, beams.

Unit 2: Failure theories. Cauchy Result: traction vector. Stress and strain transformation and principal components of stress and strain. Principal directions and invariants. Design limits on multiaxial stress: design against fracture for brittle materials and design against plastic yielding for ductile materials (Tresca, Mises).

Quiz 1 (on Units 1 and 2)

Unit 3: Elastic Strain Energy and Castigliano’s theorems. Elastic strain energy; complementary energy. Castigliano’s second theorem to solve for kinematic degrees of freedom. Applications to assemblages of structural elements in axial loading, torsion and bending.

Unit 4: Minimum Potential Energy methods. Total potential energy of loaded structure. Equilibrium conditions. Applications to statically indeterminate trusses. Approximate solutions. Trial functions and the Rayleigh Ritz method. Applications to structural assemblages with bars, beams and shafts.

Quiz 2 (on Units 3 and 4)

record_voice_over

Instructors

David Parks
Professor, Department of Mechanical Engineering
MIT

Simona Socrate
Senior Lecturer, Department of Mechanical Engineering
MIT

assistant

Platform

Edx

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
0/5
Platform
0/5
Animation
0/5