MalariaX: Defeating Malaria from the Genes to the Globe

Course
en
English
Subtitles available
33 h
This content is rated 0 out of 5
Source
  • From www.edx.org
Conditions
  • Self-paced
  • Free Access
  • Fee-based Certificate
More info
  • 11 Sequences
  • Intermediate Level
  • Subtitles in French

Their employees are learning daily with Edflex

  • Safran
  • Air France
  • TotalEnergies
  • Generali
Learn more

Course details

Syllabus

Module 1: Setting the Stage for Malaria Elimination

The course begins with the "big picture." In the lecture, Dr. Pedro L. Alonso, the head of the World Health Organization (WHO) Global Malaria Programme, offers an overview of the progress made—as well as challenges encountered – in malaria control and towards malaria elimination over the past decade. The module contextualizes these trends in WHO’s ongoing transition from promoting a "one-size-fits-all" strategy to tailoring and targeting interventions according to local and regional epidemiological, environmental, and political contexts.

Module 2: The Biology of Malaria, Part 1

This module provides foundational scientific knowledge for the course, including important biological aspects of the malaria parasite, the mosquito vector, and the human host. In this module’s lecture, Professor Dyann F. Wirth begins with a brief overview of how malaria came to be understood, then goes into detail on the parasite’s life cycle, how malaria affects humans, and the existing and sought-after tools to prevent and treat malaria. Finally, Professor Wirth reviews global endeavors to eradicate malaria.

Module 3: The Biology of Malaria, Part 2

In this module, Professor Manoj Duraisingh offers a deeper look at Plasmodium vivax , the most geographically widespread malaria parasite, and compares the biological differences between Plasmodium falciparum and Plasmodium vivax. Professor Duraisingh will offer insights on current gaps in Plasmodium vivax biology, ecology, and epidemiology. Learners will gain insights on the difficulties in controlling Plasmodium vivax and possible solutions for the elimination of the parasite.

Module 4: Vector Biology and the Dynamics of Malaria Transmission

This module focuses on the Anopheles mosquitoes, which are the vectors that transmit malaria from human to human. Professor Flaminia Catteruccia discusses biological and anatomical features of mosquitoes that influence how the parasite is acquired from humans, develops in the mosquito, and is transmitted back to humans. Professor Catteruccia then discusses how current vector control strategies work, why they fail, and how an improved understanding of vector biology can lead to improved vector and parasite control strategies.

Module 5: The Dynamics of Malaria Transmission

In this module, the course delves deeper into the malaria transmission cycle, including how it can be interrupted. Professor Matthias Marti examines the cycle of malaria parasite transmission between humans and mosquitoes, including mechanisms of parasite sequestration in the human body, and the life cycle of the parasite in the mosquito. The module then applies these concepts to examine the dynamics of infectiousness and transmission. Finally, natural transmission-blocking mechanisms are considered in the context of the ongoing development of vaccines against malaria.

Module 6: Genomic Approaches to Malaria Elimination

This course module introduces learners to the contributions of the burgeoning field of genomics to understanding and controlling malaria. After introducing key genetic principles, Dr. Sarah Volkman uses data on genetics from Senegal, Panama, and Mozambique to describe how parasite populations are changing. Currently available genomic tools and methods, along with their application to inform key questions about malaria transmission, prevention, and treatment, are discussed.

Module 7: Social, Cultural, Behavioral, and Environmental Determinants of Malaria

In this module, the course’s focus shifts from the microscopic genes to a more global perspective. Using a systemic view of malaria, the module describes human and environmental factors that influence how malaria is manifested and how control efforts work. Professor Marcia Castro discusses various components of global "systems" that enable the continued existence of malaria, and presents historical examples that exemplify the importance of these components. Professor Castro also describes the challenges and the opportunities in the struggle to eradicate malaria that these human and environmental factors create.

Module 8: Political Analysis for Malaria

In this module, the course presents another analytical approach that has been repeatedly shown to be necessary for successful malaria programming, as well as for public health more broadly. Professor Michael R. Reich approaches the topic of malaria control and eradication policy from the realm of politics. This module provides overviews of principles of applied political analysis and analysis methods that can be used to promote appropriate policy reforms. Professor Reich walks through the use of PolicyMaker, a free open-source political analysis software, analyzing case studies including one on the Affordable Medicines for Malaria Facility (AMFm).

Module 9: Malaria Control and Elimination: Surveillance-Response Approaches

This module discusses disease surveillance, a health system function essential to malaria elimination. Surveillance—finding where and when transmission of infectious diseases takes place—is critical for deciding where to target public health actions. In the lecture, Professor Marcel Tanner provides an in-depth examination of how to use monitoring and evaluation (M&E), surveillance-response, and data analysis effectively for malaria control and elimination. Using case studies from Zambia, China, the Pacific Islands and Tanzania, the module provides practical guidance on developing surveillance-response approaches and discusses how surveillance systems can be incorporated into public health programs.

Module 10: Stratification: The Science of Malaria Elimination

In this module, Dr. Abdisalan Noor focuses on the analysis and use of malaria-related data to inform national and subnational strategic plans for malaria elimination, intervention targeting, and prioritization of resources. Learners will be introduced to concepts and metrics for malaria stratification, including the strengths and weaknesses of commonly used metrics for stratification. Dr. Noor discusses how stratification for elimination allows for focused, tailored responses by assigning specific intervention packages and deploying strategies to designated areas.

Module 11: Modern Data Science Approaches to Malaria

Mathematical models of malaria have been used for more than 100 years as a tool to facilitate the understanding of malaria transmission dynamics. In the final module, Professor Melissa Penny reviews the basis of modeling transmission and the current state of modeling strategies for malaria. Modeling elimination feasibility, different elimination strategies with mixed interventions in different transmission settings, and modeling the economics of elimination strategies will be discussed. Learners will gain insights on the potential impact and principles of applied modeling for public health action toward disease elimination.

Prerequisite

Undergraduate-level biology and quantitative methods

Instructors

Marcia Castro
Andelot Professor of Demography and Chair of the Department of Global Health and Population
Harvard T.H. Chan School of Public Health

Flaminia Catteruccia
Professor, Department of Immunology and Infectious Diseases
Harvard T.H. Chan School of Public Health

Michael R. Reich
Taro Takemi Professor of International Health Policy Emeritus, Department of Global Health and Population
Harvard T.H. Chan School of Public Health

Marcel Tanner
Professor of Epidemiology and Medical Parasitology
University of Basel

Sarah Volkman
Principal Research Scientist, Department of Immunology and Infectious Diseases
Harvard T.H. Chan School of Public Health

Dyann F. Wirth
Richard Pearson Strong Professor of Infectious Diseases, Department of Immunology and Infectious Diseases
Harvard T.H. Chan School of Public Health

Abdisalan Noor
Head of Unit, Strategic Information for Response, Global Malaria Programme
World Health Organization

Melissa Penny
Assistant Professor and Head, Disease Modelling Research Unit
Swiss Tropical and Public Health Institute, University of Basel

Manoj Duraisingh
John LaPorte Given Professor of Immunology and Infectious Diseases
Harvard T.H. Chan School of Public Health

Editor

Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Established in 1636 and named for its first benefactor clergyman John Harvard, Harvard is the United States' oldest institution of higher learning, and its history, influence, and wealth have made it one of the world's most prestigious universities. The Harvard Corporation is its first chartered corporation. Although never formally affiliated with any denomination, the early College primarily trained Congregational and Unitarian clergy. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard had emerged as the central cultural establishment among Boston elites. Following the American Civil War, President Charles W. Eliot's long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard was a founding member of the Association of American Universities in 1900. A. Lawrence Lowell, who followed Eliot, further reformed the undergraduate curriculum and undertook aggressive expansion of Harvard's land holdings and physical plant. James Bryant Conant led the university through the Great Depression and World War II and began to reform the curriculum and liberalize admissions after the war. The undergraduate college became coeducational after its 1977 merger with Radcliffe College.

The university is organized into eleven separate academic units—ten faculties and the Radcliffe Institute for Advanced Study—with campuses throughout the Boston metropolitan area: its 209-acre (85 ha) main campus is centered on Harvard Yard in Cambridge, approximately 3 miles (5 km) northwest of Boston; the business school and athletics facilities, including Harvard Stadium, are located across the Charles River in the Allston neighborhood of Boston and the medical, dental, and public health schools are in the Longwood Medical Area. The endowment of Harvard's is worth $37.1 billion, making it the largest of any academic institution.

Harvard is a large, highly residential research university. The nominal cost of attendance is high, but the university's large endowment allows it to offer generous financial aid packages. The Harvard Library is the world's largest academic and private library system, comprising 79 individual libraries holding over 18 million items. The University is cited as one of the world's top tertiary institutions by various organizations.

Harvard's alumni include eight U.S. presidents, several foreign heads of state, 62 living billionaires, 359 Rhodes Scholars, and 242 Marshall Scholars. To date, some 157 Nobel laureates, 18 Fields Medalists, and 14 Turing Award winners have been affiliated as students, faculty, or staff. In addition, Harvard students and alumni have won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold, 41 silver and 21 bronze).

Platform

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

This content is rated 4.5 out of 5
(no review)
This content is rated 4.5 out of 5
(no review)
Complete this resource to write a review