Intro to Traffic Flow Modeling and Intelligent Transport Systems

Course
en
English
35 h
This content is rated 0 out of 5
Source
  • From www.edx.org
Conditions
  • Self-paced
  • Free Access
  • Fee-based Certificate
More info
  • 7 Sequences
  • Intermediate Level

Their employees are learning daily with Edflex

  • Safran
  • Air France
  • TotalEnergies
  • Generali
Learn more

Course details

Syllabus

Week 1: Traffic Flow Basics
Introduction of basic traffic variables that are necessary to describe congestion (flow, density and speed) and the relations among them under equilibrium, known as fundamental diagram. Description of graphical tools such as time-space diagramsand input-output diagrams.

Week 2: Continuum Models of Traffic Flow
Review of the different families of traffic models (micro, meso, macro, network). Description of LWR(Lighthill-Whitham-Richards) models representing the dynamics of traffic streams through the continuity equation and an assumed equilibrium flow-density fundamental diagram.

Week 3: Traffic Modeling and Control for Freeway Systems
Introduction to different car following models. Description of space and time discretizationand the dynamic difference equations of the macroscopic Cell Transmission Model (CTM). Discussion of the concept of ramp metering in highway traffic applications.

Week 4: Macroscopic Fundamental Diagram (MFD)
Introduction to network level aggregated models. These models ignore small-scale information and describe how congestion changes over time and space in different zones of a city. Relations between traffic density and traffic flow emerge in a neat way, creating what is known as a MFD. Properties and dynamic characteristics of MFD models are presented.

Week 5: Network-level Traffic Management
Established control techniques are introduced, with the focus being on how they can be integrated with MFD models to provide large-scale traffic control for congested networks for single- and multi-region systems.

Week 6: Control of Traffic Signals
Introduction to the basics of traffic signal control. Description of methods to optimize traffic light settings. Generation of fixed-time signal plans for day-of-week and time-of-day implementation. Discussion of traffic responsive systems, the semi-actuated and fully-actuated control logic, and real-time adaptive strategies. Variable speed limits (VSL) are discussed as a measure to improve mobility in highway networks.

Week 7: Equilibria in Transportation
Introduction to the concept of User Equilibrium and the way it can be usedto predict and steer behavioral adjustments following long lasting perturbations. The fundamental concepts and assumptions required for such analyses are explained and illustrated with two applications: route and departure time choice.

Prerequisite

Analysis & Linear Algebra (1st year BSc level)

Instructors

Nikolas Geroliminis
Associate Professor
École polytechnique fédérale de Lausanne

Anastasios Kouvelas
Doctor
École polytechnique fédérale de Lausanne

Raphaël Lamotte
Doctor
École polytechnique fédérale de Lausanne

Dimitrios Tsitsokas
Doctoral Assistant
École polytechnique fédérale de Lausanne

Editor

The École polytechnique fédérale de Lausanne (EPFL, English: Swiss Federal Institute of Technology in Lausanne) is a research university in Lausanne, Switzerland, that specialises in physical sciences and engineering.

One of the two Swiss Federal Institutes of Technology, the school was founded by the Swiss Federal Government with the stated mission to:

Educate engineers and scientists to the highest international standing
Be a national center of excellence in science and technology
Provide a hub for interaction between the scientific community and the industry
EPFL is considered one of the most prestigious universities in the world for engineering and sciences, ranking 17th overall and 10th in engineering in the 2015 QS World University Rankings; 34th overall and 12th in engineering in the 2015 Times Higher Education World University Rankings.

Platform

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

This content is rated 4.5 out of 5
(no review)
This content is rated 4.5 out of 5
(no review)
Complete this resource to write a review