link Source: www.coursera.org
list 8 sequences
assignment Level : Intermediate
chat_bubble_outline Language : English
card_giftcard 80 points
Users' reviews
-
starstarstarstarstar
0 reviews

Key Information

credit_card Free access
verified_user Free certificate
timer 8 hours in total

About the content

Gain a foundational understanding of the world of 2-dimensional materials, including Graphene. This course provides an overview of this exciting new field of study, starting with the concept of what a 2-dimensional material is, how they are produced, their unique and superlative properties, and the range of potential applications.

more_horiz Read more
more_horiz Read less
dns

Syllabus

Week 1: Introduction

  • What is graphene? Atomic structure and graphene
  • History of graphene
  • Why is graphene a 2-d material?
  • Imaging the structure of graphene
  • Properties of graphene overview

Week 2: Production of graphene and 2-d materials

  • Comparison of production methods
  • Scotch-tape method (micromechanical cleavage)
  • Chemical vapour deposition
  • Solution-exfoliation 1 – graphene and other 2-d materials
  • Solution-exfoliation 2 – graphene oxide
  • Decomposition of silicon carbide
  • Production of graphene nano-ribbons

Week 3: Electronic properties and devices

  • Electronic structure of graphene
  • First graphene device
  • Further graphene devices and evidence of 2-dimensional nature
  • Electronic properties of bilayer graphene
  • Switching graphene OFF

Week 4: Raman spectroscopy

  • Principles of Raman spectroscopy
  • Raman spectrum of graphene
  • Analysis of graphene Raman spectra
  • Raman spectra of other 2-D materials

Week 5: Chemical properties and sensors

  • X-ray photoemission spectroscopy
  • Optical absorption spectroscopy
  • Functionalising graphene
  • Hydrogels and aerogels
  • Liquid cystals
  • Gas and chemical sensors

Week 6: Mechanical properties and applications

  • Measuring mechanical properties
  • Graphene resonators
  • Electromechanical devices
  • Graphene bubbles
  • Graphene composites

Week 7: Graphene membranes

  • GO and rGO membranes
  • Membranes for separation
  • Membranes as barriers
  • Porous membranes
  • Supercapacitor electrodes

Week 8: Biomedical devices and 2-d heterostructures

  • Biocompatibility and biodistribution
  • Scaffolds for tissue engineering
  • Drug and gene delivery
  • Cancer therapy
  • Introduction to 2-d heterostructures
  • 2D heterostructure devices
record_voice_over

Instructors

  • Aravind Vijayaraghavan - School of Materials and National Graphene Institute
store

Content Designer

University of Manchester
Tracing its roots back to 1824, the University of Manchester is home to almost 40,000 students. The University has three Nobel laureates among its current staff – more than any other British university - and a total of 25 Nobel laureates have come from our past and present students and staff. We have three main goals: to undertake world-class research; to deliver an outstanding learning and student experience; and to be socially responsible.
assistant

Platform

Coursera

Coursera is a digital company offering massive open online course founded by computer teachers Andrew Ng and Daphne Koller Stanford University, located in Mountain View, California. 

Coursera works with top universities and organizations to make some of their courses available online, and offers courses in many subjects, including: physics, engineering, humanities, medicine, biology, social sciences, mathematics, business, computer science, digital marketing, data science, and other subjects.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
5/5
Platform
5/5
Animation
5/5