list 8 sequences
assignment Level : Introductive
chat_bubble_outline Language : English

Top companies choose Edflex to build in-demand career skills.

Get started
Users' reviews
-
starstarstarstarstar

## Key Information

credit_card Free access
verified_user Fee-based Certificate

The purpose of this course is to review the material covered in the Fundamentals of Engineering (FE) exam to enable the student to pass it. It will be presented in modules corresponding to the FE topics, particularly those in Civil and Mechanical Engineering. Each module will review main concepts, illustrate them with examples, and provide extensive practice problems.

dns

## Syllabus

This section of the course will provide you with an overview of the course, an outline of the topics covered, as well as instructor comments about the Fundamentals of Engineering Exam and reference handbook.
• Week 2 - Mathematics
This module reviews the basic principles of mathematics covered in the FE Exam. We first review the equations and characteristics of straight lines, then classify polynomial equations, define quadric surfaces and conics, and trigonometric identities and areas....
• Week 3 - Probability and Statistics
This module reviews the basic principles of probability and statistics covered in the FE Exam. We first review some basic parameters and definitions in statistics, such as mean and dispersion properties followed by computation of permutations and combinations....
• Week 4 - Statics
This module reviews the principles of statics: Forces and moments on rigid bodies that are in equilibrium. We first discuss Newton’s laws and basic concepts of what is a force, vectors, and the dimensions and units involved. Then we consider systems of forces ...
• Week 5 - Mechanics of Materials
This module reviews the principles of the mechanics of deformable bodies. We first review the basic concepts of equilibrium and stresses and strains in prismatic bars under axial loading. Then we discuss the major mechanical properties of common engineering ma...
• Week 6 - Fluid Mechanics
This module reviews the basic principles of fluid mechanics particularly the topics covered in the FE Exam. It first discusses what a fluid is and how it is distinguished from a solid, basic characteristics of liquids and gases, and concepts of normal and shea...
• Week 7 - Hydraulics and Hydrologic Systems
This module applies basic principles of fluid mechanics to practical problems in hydraulics, hydrology, and groundwater flow. We first discuss the generalized and one-dimensional momentum theorem and apply it to various typical problems. Flow in pipes and non-...
• Week 8 - Structural Analysis
This module reviews basic principles of the structural analysis of trusses and beams. It builds on material covered in Statics (Module 6) and Mechanics of Materials (Module 8). We first review the conditions for static equilibrium, then apply them to simple tr...
record_voice_over

## Instructors

Dr. Philip Roberts
Professor
School of Civil and Environmental Engineering

store

## Content Designer

The Georgia Institute of Technology is one of the nation's top research universities, distinguished by its commitment to improving the human condition through advanced science and technology. Georgia Tech's campus occupies 400 acres in the heart of the city of Atlanta, where more than 20,000 undergraduate and graduate students receive a focused, technologically based education.
assistant

## Platform

Coursera is a digital company offering massive open online course founded by computer teachers Andrew Ng and Daphne Koller Stanford University, located in Mountain View, California.

Coursera works with top universities and organizations to make some of their courses available online, and offers courses in many subjects, including: physics, engineering, humanities, medicine, biology, social sciences, mathematics, business, computer science, digital marketing, data science, and other subjects.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
0/5
Platform
0/5
Animation
0/5