date_range Starts on July 6, 2020
event_note End date August 10, 2020
list 5 sequences
assignment Level : Advanced
chat_bubble_outline Language : English
card_giftcard 350 points
Logo My Mooc Business

Top companies choose Edflex to build in-demand career skills.

Get started
Users' reviews
-
starstarstarstarstar

Key Information

credit_card Free access
verified_user Fee-based Certificate
timer 25 hours in total

About the content

Very different from what is taught in standard courses, "Fundamentals of Current Flow" provides a unified conceptual framework for ballistic and diffusive transport of both electrons and phonons - essential information for understanding nanoelectronic devices.

The traditional description of electronic motion through a solid is based on diffusive transport, which means that the electron takes a random walk from the source to the drain of a transistor, for example. However, modern nanoelectronic devices often have channel lengths comparable to a mean free path so that electrons travel ballistically, or "like a bullet."

Verified/Master's students taking this course will be required to complete two (2) proctored exams using the edX online Proctortrack software. To be sure your computer is compatible, see Proctortrack Technical Requirements.

Nanoscience and Technology MicroMasters ®

Fundamentals of Current Flow is one course in a growing suite of unique, 1-credit-hour short courses developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters® program in Nanoscience and Technology.

For further information and other courses offered, see the Nanoscience and Technology MicroMasters® page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.

  • Ballistic and diffusive conductance
  • Density of states
  • Number of modes
  • Conductivity
  • Landauer formula

more_horiz Read more
more_horiz Read less
report_problem

Prerequisite

Undergraduate degree in engineering or the physical sciences, knowledge of differential equations and linear algebra.

dns

Syllabus

Week 1: The New Perspective

1.1 Introduction
1.2 Two Key Concepts
1.3 Why Electrons Flow
1.4 Conductance Formula
1.5 Ballistic (B) Conductance

Week 2: The New Perspective (Continued)

1.6 Diffusive (D) Conductance
1.7 Connecting B to D
1.8 Angular Averaging
1.9 Drude Formula
1.10 Summing Up

Week 3: Energy Band Model

2.1. Introduction
2.2. E(p) or E(k) Relation
2.3. Counting States
2.4. Density of States
2.5. Number of Modes

Week 4: Energy Band Model (Continued)

2.6. Electron Density (n)
2.7. Conductivity vs. n
2.8 - 2.9 Bonus Lectures; NOT covered on exams
2.10 Summing Up
3.1 Introduction
3.2 A New Boundary Condition
3.3 Quasi-Fermi Levels (QFL's)

Week 5: Energy Band Model (continued)

3.4 Current from QFL's
3.5 Landauer formulas
3.6 - 3.10 Bonus Lectures; NOT covered on exams

Epilog: Looking Forward-From Semiclassical to Quantum

Text: S. Datta, "Lessons from Nanoelectronics", Part A: Basic Concepts,
World Scientific, Second Edition 2017

The manuscript will be available for download on the course's website.

record_voice_over

Instructors

Supriyo Datta
Thomas Duncan Distinguished Professor of Electrical and Computer Engineering, NAE member
Purdue University

Shuvro Chowdhury
PhD Student
Purdue University

assistant

Platform

Edx

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
0/5
Platform
0/5
Animation
0/5