link
Source: www.coursera.org
list
12 sequences
assignment
Level : Introductory
label
Electrical Engineering
chat_bubble_outline
Language : English
card_giftcard
768 points
Users' reviews
Key Information
credit_card
Free access
verified_user
Free certificate
timer
96 hours in total
About the content
This course probes fundamental ideas in electrical engineering, seeking to understand how electrical signals convey information, how bits can represent smooth signals like music and how modern communication systems work.
more_horiz
Read more
more_horiz
Read less
dns
Syllabus
Elements of signal and system theory
Week 1: Digital and analog information; block diagrams: sources, systems, sinks. Simple signals and systems. Complex numbers.
Analog Signal Processing
Weeks 2-3: Representation of signals by electrical quantities (electric currents and electromagnetic radiation). Elementary circuit theory: resistors and sources, KVL and KCL, power, equivalent circuits. Circuits with memory: impedance, transfer functions, Thévenin and Mayer-Norton equivalent circuits.
Frequency Domain Ideas
Weeks 4-5: Fourier series and Fourier transforms. Signals in time and frequency domains. Encoding information in the frequency domain. Filtering signals. Modeling the speech signal.
Digital Signal Processing
Weeks 6-8: Analog-to-digital (A/D) conversion: Sampling Theorem, amplitude quantization, data rate. Discrete-time signals and systems. Discrete-time Fourier transform, discrete Fourier transform and the fast Fourier transform. Digital implementation of analog filtering.
Communicating information
Weeks 9-10: Fundamentals of communication: channel models, wireline and wireless channels. Analog (AM) communication: modulation and demodulation, noise (signal-to-noise ratio, white noise models), linear filters for noise reduction.
Weeks 11-12: Digital communication: binary signal sets, digital channel models. Entropy and Shannon's Source Coding Theorem: lossless and lossy compression; redundancy. Error-correcting codes: Shannon’s Noisy Channel Coding Theorem, channel capacity, Hamming codes. Comparison of analog and digital communication.
Week 1: Digital and analog information; block diagrams: sources, systems, sinks. Simple signals and systems. Complex numbers.
Analog Signal Processing
Weeks 2-3: Representation of signals by electrical quantities (electric currents and electromagnetic radiation). Elementary circuit theory: resistors and sources, KVL and KCL, power, equivalent circuits. Circuits with memory: impedance, transfer functions, Thévenin and Mayer-Norton equivalent circuits.
Frequency Domain Ideas
Weeks 4-5: Fourier series and Fourier transforms. Signals in time and frequency domains. Encoding information in the frequency domain. Filtering signals. Modeling the speech signal.
Digital Signal Processing
Weeks 6-8: Analog-to-digital (A/D) conversion: Sampling Theorem, amplitude quantization, data rate. Discrete-time signals and systems. Discrete-time Fourier transform, discrete Fourier transform and the fast Fourier transform. Digital implementation of analog filtering.
Communicating information
Weeks 9-10: Fundamentals of communication: channel models, wireline and wireless channels. Analog (AM) communication: modulation and demodulation, noise (signal-to-noise ratio, white noise models), linear filters for noise reduction.
Weeks 11-12: Digital communication: binary signal sets, digital channel models. Entropy and Shannon's Source Coding Theorem: lossless and lossy compression; redundancy. Error-correcting codes: Shannon’s Noisy Channel Coding Theorem, channel capacity, Hamming codes. Comparison of analog and digital communication.
record_voice_over
Instructors
- Don Johnson
store
Content Designer

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the top 20 universities in the U.S. and the top 100 in the world. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy.
assistant
Platform

Coursera is a digital company offering massive open online course founded by computer teachers Andrew Ng and Daphne Koller Stanford University, located in Mountain View, California.
Coursera works with top universities and organizations to make some of their courses available online, and offers courses in many subjects, including: physics, engineering, humanities, medicine, biology, social sciences, mathematics, business, computer science, digital marketing, data science, and other subjects.
You are the designer of this MOOC?
keyboard_arrow_left
grade
keyboard_arrow_right
Integrate the reviews system