
Key Information
About the content
Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. This area is also concerned with issues both theoretical and practical.
In this course, we will present algorithms and approaches in such a way that grounds them in larger systems as you learn about a variety of topics, including:
- statistical supervised and unsupervised learning methods
- randomized search algorithms
- Bayesian learning methods
- reinforcement learning
The course also covers theoretical concepts such as inductive bias, the PAC and Mistake‐bound learning frameworks, minimum description length principle, and Ockham's Razor. In order to ground these methods the course includes some programming and involvement in a number of projects.
By the end of this course, you should have a strong understanding of machine learning so that you can pursue any further and more advanced learning.
This is a three-credit course.
There are four primary objectives for the course:
- To provide a broad survey of approaches and techniques in machine learning;
- To develop a deeper understanding of several major topics in machine learning;
- To develop the design and programming skills that will help you to build intelligent, adaptive artifacts;
- To develop the basic skills necessary to pursue research in machine learning.
Syllabus
Week 2: SL 2- Regression and Classification
Week 3: SL 3- Neutral Networks
Week 4: SL 4- Instance Based Learning
Week 5: SL 5- Ensemble B&B
Week 6: SL 6- Kernel Methods & SVMs
Week 7: SL 7- Comp Learning Theory
Week 8: SL 8- VC Dimensions
Week 9: SL9- Bayesian Learning
Week 10: SL 10- Bayesian Inference
Week 11: UL 1- Randomized Optimization
Week 12: UL 2- Clustering/ UL 3- Feature Selection
Week 13: UL 4- Feature Transformation/UL 5- Info Theory
Week 14: RL 1- Markov Decision Processes
Week 15: Reinforcement Learning
Week 16: RL 3 Game Theory/Outro
Instructors
Charles Isbell
Executive Associate Dean and Professor
The Georgia Institute of Technology
Content Designer

Platform

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.