Dynamic Energy Modelling of Buildings: Thermal Simulation
link Source: www.edx.org
date_range Starts on January 25, 2023
event_note Ends on March 8, 2023
list 5 sequences
assignment Level : Intermediate
chat_bubble_outline Language : English
card_giftcard 0 points
Users' reviews
0 reviews

Key Information

credit_card Free access
verified_user Fee-based Certificate
timer 30 hours in total

About the content

Many engineers are puzzled by questions such as: how to shift or reduce peak heating demand to obtain a better match with a smart grid or renewable energy system? What is thermally more efficient: a heavy concrete building or a light timber-frame building? How effective is night ventilation in warm periods?

This course will provide you with the answers to these and many other questions related to dynamic thermal behavior in buildings.

We start with a recap of the various heat transfer phenomena that affect buildings’ thermal behavior. Then you will learn how to combine them in dynamic energy balances of relevant building elements such as windows, façades, floors, indoor walls and ceilings, air, furniture, and even the occupants. You will be guided step by step through the construction of a differential equation network, enabling you to understand how to model thermal energy demand and temperature levels during the construction and use of existing buildings and new and innovative building systems.

Secondly, you will learn how to solve the resulting equations by using either finite difference or response factor methods. As a result, you will be able to discover for yourself the effects of different designs, and also understand the basic principles which underlie well-known Building Simulation Tools and HVAC software like Energy+, esp-r, DOE-2, Carrier-HAP or TRNSYS. Thus will help you to maximize your correct use of these tools in the future.

Finally, you will apply your knowledge by building your own test-software in the language of your choice (e.g. Matlab, R, Python) and solving several equation networks in order to answer the questions posed above and to thermally optimize rooms in buildings in terms of temperature and energy efficiency, and even to determine the thermal comfort level for occupants accounting for radiant temperatures.

more_horiz Read more
more_horiz Read less


  1. How to apply diverse heat transfer laws to buildings.
  2. How to construct a thermal nodes network using different grey-box and white-box models.
  3. How to model a building’s dynamics, derive the corresponding balance equations, and solve the system of equations.
  4. To understand the effects of buildings’ construction and dynamic behavior on temperature profiles and energy demand and loads.
  5. How to combine pressure, mass and energy balances to model passive systems like a solar chimney or a ventilated cavity in a second-skin façade.


Laure Itard
TU Delft




Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

You are the designer of this MOOC?
What is your opinion on this resource ?