Fundamentals of Digital Image and Video Processing

Course
en
English
72 h
This content is rated 4.3519 out of 5
Source
  • From www.coursera.org
Conditions
  • Self-paced
  • Free Access
  • Fee-based Certificate
More info
  • 12 Sequences
  • Introductive Level

Their employees are learning daily with Edflex

  • Safran
  • Air France
  • TotalEnergies
  • Generali
Learn more

Course details

Syllabus

  • Week 1 - Introduction to Image and Video Processing
    In this module we look at images and videos as 2-dimensional (2D) and 3-dimensional (3D) signals, and discuss their analog/digital dichotomy. We will also see how the characteristics of an image changes depending on its placement over the electromagnetic spect...
  • Week 2 - Signals and Systems
    In this module we introduce the fundamentals of 2D signals and systems. Topics include complex exponential signals, linear space-invariant systems, 2D convolution, and filtering in the spatial domain.
  • Week 3 - Fourier Transform and Sampling
    In this module we look at 2D signals in the frequency domain. Topics include: 2D Fourier transform, sampling, discrete Fourier transform, and filtering in the frequency domain.
  • Week 4 - Motion Estimation
    In this module we cover two important topics, motion estimation and color representation and processing. Topics include: applications of motion estimation, phase correlation, block matching, spatio-temporal gradient methods, and fundamentals of color image pro...
  • Week 5 - Image Enhancement
    In this module we cover the important topic of image and video enhancement, i.e., the problem of improving the appearance or usefulness of an image or video. Topics include: point-wise intensity transformation, histogram processing, linear and non-linear noise...
  • Week 6 - Image Recovery: Part 1
    In this module we study the problem of image and video recovery. Topics include: introduction to image and video recovery, image restoration, matrix-vector notation for images, inverse filtering, constrained least squares (CLS), set-theoretic restoration appro...
  • Week 7 - Image Recovery : Part 2
    In this module we look at the problem of image and video recovery from a stochastic perspective. Topics include: Wiener restoration filter, Wiener noise smoothing filter, maximum likelihood and maximum a posteriori estimation, and Bayesian restoration algorith...
  • Week 8 - Lossless Compression
    In this module we introduce the problem of image and video compression with a focus on lossless compression. Topics include: elements of information theory, Huffman coding, run-length coding and fax, arithmetic coding, dictionary techniques, and predictive cod...
  • Week 9 - Image Compression
    In this module we cover fundamental approaches towards lossy image compression. Topics include: scalar and vector quantization, differential pulse-code modulation, fractal image compression, transform coding, JPEG, and subband image compression.
  • Week 10 - Video Compression
    In this module we discus video compression with an emphasis on motion-compensated hybrid video encoding and video compression standards including H.261, H.263, H.264, H.265, MPEG-1, MPEG-2, and MPEG-4.
  • Week 11 - Image and Video Segmentation
    In this module we introduce the problem of image and video segmentation, and discuss various approaches for performing segmentation including methods based on intensity discontinuity and intensity similarity, watersheds and K-means algorithms, and other advanc...
  • Week 12 - Sparsity
    In this module we introduce the notion of sparsity and discuss how this concept is being applied in image and video processing. Topics include: sparsity-promoting norms, matching pursuit algorithm, smooth reformulations, and an overview of the applications.

Prerequisite

None.

Instructors

Aggelos K. Katsaggelos
Joseph Cummings Professor
Department of Electrical Engineering and Computer Science

Editor

Northwestern University is an American university located in Evanston (just north of Chicago), in the US state of Illinois. It is one of the most prestigious universities in the world, particularly for journalism, economics and theatre. The university has two campuses, one in Evanston (the main campus) and one in downtown Chicago.

Platform

Coursera is a digital company offering massive open online course founded by computer teachers Andrew Ng and Daphne Koller Stanford University, located in Mountain View, California. 

Coursera works with top universities and organizations to make some of their courses available online, and offers courses in many subjects, including: physics, engineering, humanities, medicine, biology, social sciences, mathematics, business, computer science, digital marketing, data science, and other subjects.

This content is rated 4.3519 out of 5
(no review)

What did you think of this course?

Complete this resource to write a review