Deep Learning Explained
list 6 sequences
assignment Level : Intermediate
chat_bubble_outline Language : English
card_giftcard 240 points
Users' reviews
-
starstarstarstarstar

Key information

credit_card Free access
verified_user Fee-based Certificate
timer 24 hours in total

About the content

Machine learning uses computers to run predictive models that learn from existing data to forecast future behaviors, outcomes, and trends. Deep learning is a sub-field of machine learning, where models inspired by how our brain works are expressed mathematically, and the parameters defining the mathematical models, which can be in the order of few thousands to 100+ million, are learned automatically from the data.

Deep learning is a key enabler of AI powered technologies being developed across the globe. In this deep learning course, you will learn an intuitive approach to building complex models that help machines solve real-world problems with human-like intelligence. The intuitive approaches will be translated into working code with practical problems and hands-on experience. You will learn how to build and derive insights from these models using Python Jupyter notebooks running on your local Windows or Linux machine, or on a virtual machine running on Azure. Alternatively, you can leverage the Microsoft Azure Notebooks platform for free.

This course provides the level of detail needed to enable engineers / data scientists / technology managers to develop an intuitive understanding of the key concepts behind this game changing technology. At the same time, you will learn simple yet powerful "motifs" that can be used with lego-like flexibility to build an end-to-end deep learning model. You will learn how to use the Microsoft Cognitive Toolkit -- previously known as CNTK -- to harness the intelligence within massive datasets through deep learning with uncompromised scaling, speed, and accuracy.

edX offers financial assistance for learners who want to earn Verified Certificates but who may not be able to pay the fee. To apply for financial assistance, enroll in the course, then follow this link to complete an application for assistance.

  • The components of a deep neural network and how they work together
  • The basic types of deep neural networks (MLP, CNN, RNN, LSTM) and the type of data each is designed for
  • A working knowledge of vocabulary, concepts, and algorithms used in deep learning
  • How to build:
    • An end-to-end model for recognizing hand-written digit images, using a multi-class Logistic Regression and MLP (Multi-Layered Perceptron)
    • A CNN (Convolution Neural Network) model for improved digit recognition
    • An RNN (Recurrent Neural Network) model to forecast time-series data
    • An LSTM (Long Short Term Memory) model to process sequential text data

more_horiz Read more
more_horiz Read less
report_problem

Prerequisite

dns

Syllabus

Week 1: Introduction to deep learning and a quick recap of machine learning concepts.
Week 2: Building a simple multi-class classification model using logistic regression
Week 3: Detecting digits in hand-written digit image, starting by a simple end-to-end model, to a deep neural network
Week 4: Improving the hand-written digit recognition with convolutional network
Week 5: Building a model to forecast time data using a recurrent network
Week 6: Building text data application using recurrent LSTM (long short term memory) units

record_voice_over

Instructors

Steve Elston
Managing Director
Quantia Analytics, LLC

store

Content designer

Microsoft

Microsoft Corporation is an American multinational technology company headquartered in Redmond, Washington, that develops, manufactures, licenses, supports and sells computer software, consumer electronics and personal computers and services. Its best known software products are the Microsoft Windows line of operating systems, Microsoft Office office suite, and Internet Explorer web browser.

assistant

Platform

Edx

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
0/5
Platform
0/5
Animation
0/5