Decision Making Under Uncertainty: Introduction to Structured Expert Judgment
date_range Starts on October 29, 2019
event_note End date December 10, 2019
list 6 sequences
assignment Level : Introductive
chat_bubble_outline Language : English
card_giftcard 192 points
Users' reviews
-
starstarstarstarstar

Key information

credit_card Free access
verified_user Fee-based Certificate
timer 24 hours in total

About the content

In an increasingly data-driven world, data and its use aren't always all it's cracked up to be. This course aims to address the critical lack of any or appropriate data in many areas where complex decisions need to be made.

For instance, how can you predict volcano activity when no eruptions have been recorded over a long period of time? Or how can you predict how many people will be resistant to antibiotics in a country where there is no available data at national level? Or how about estimating the time needed to evacuate people in flood risk areas?

In situations like these, expert opinions are needed to address complex decision-making problems. This course, aimed at researchers and professionals from any academic background, will show you how expert opinion can be used for uncertainty quantification in a rigorous manner.

Various techniques are used in practice. They vary from the informal and undocumented opinion of one expert to a fully documented and formal elicitation of a panel of experts, whose uncertainty assessments can be aggregated to provide support for complex decision making.

In this course you will be introduced to state-of-the-art expert judgment methods, particularly the Classical Model (CM) or Cooke's method, which is arguably the most rigorous method for performing Structured Expert Judgment.

CM, developed at TU Delft by Roger Cooke, has been successfully applied for over 30 years in areas as diverse as climate change, disaster management, epidemiology, public and global health, ecology, aeronautics/aerospace, nuclear safety, environment and ecology, engineering and many others.

By the end of the course all learners will be able to:

  1. Recognize and advise on when and in which settings to use the Classical Model (CM) for performing Structured Expert Judgment
  2. Account for uncertainty assessments in complex decision-making context when data pose issues
  3. Use the CM to analyze expert data and obtain answers to questions of interest
  4. Participate in an optional IDEA Protocol module, which uses a different method of performing Structured Expert Judgment.

Verified learners will have the added benefit of being able to:

  1. Get an in-depth perspective on the CM method
  2. Analyze expert data to apply Structured Expert Judgement methods to real world scenarios
  3. Participate in optional modules about dependence elicitation and eliciting probabilities.

more_horiz Read more
more_horiz Read less
report_problem

Prerequisite

Basic concepts in Probability Theory and Statistics. Links to videos introducing the concepts will be provided.

dns

Syllabus

WEEK 1: Why and when to use SEJ?
Consider why and when to use Structured Expert Judgment (SEJ) and the Classical Model (CM), and then apply the model to applicable scenarios.

WEEK 2: Statistical accuracy (calibration) and information score
Learn how to use two key performance measures within the CM effectively.

WEEK 3: Performance-based weights and the Decision Maker
Learn how to aggregate expert opinion based on performance-based weights. Review other weighting schemes and evaluate them with respect to in-sample and out-of-sample validation techniques.

WEEK 4: Data analysis using Excalibur
The learners receive expert data that they will use to:
i) Compute the statistical accuracy and information scores for each expert,
ii) Aggregate their assessments with various weights, and
iii) Comment on the performance of the resulting Decision Makers.

WEEK 5: Applications of CM
Learn about real CM studies using an available TU Delft SEJ dataset and discuss particulars of the different studies provided.

WEEK 6: Practical matters (biases, experts, elicitation)
Consider the practical matters that are necessary for running the elicitation. Special attention will be given to biases and how to train experts to assess uncertainties.
Optional modules about another SEJ approach (the IDEA protocol) will be provided for learners who are keen on learning about an alternative method. Modules on dependence elicitation and eliciting probabilities will be provided to verified learners who want to learn about other contexts for which SEJ methods are appropriate.
Additionally, a more advanced course will be available for learners who are keen to apply the model to a project in their own situation to a problem of interest.

record_voice_over

Instructors

Tina Nane
Assistant Professor of Applied Probability
Delft University of Technology

Anca Hanea
Senior Researcher at the Centre of Excellence for Biosecurity Risk Analysis (CEBRA)
University of Melbourne

Roger Cooke
Chauncey Starr Senior Fellow at Resources for Future in Washington and Emeritus Professor
Delft University of Technology

store

Content designer

Delft University of Technology
Delft University of Technology
assistant

Platform

Edx

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
0/5
Platform
0/5
Animation
0/5