link Source: www.edx.org
date_range Starts on August 24, 2021
event_note Ends on October 4, 2021
list 6 sequences
assignment Level : Intermediate
chat_bubble_outline Language : English
card_giftcard 240 point
Logo My Mooc Business

Top companies choose Edflex to build in-demand career skills.

Get started
Users' reviews
5
starstarstarstarstar
Read review

Key Information

credit_card Free access
verified_user Fee-based Certificate
timer 24 hours in total

About the content

In order to be competitive in the computer science field, it’s imperative to understand the basic building blocks of a modern computer and how they directly impact the speed and efficiency of a program. Whether you work with embedded systems, mobile computer-based systems, or cloud systems, performance and energy efficiency are key drivers of usability and competitiveness of computerized products.

In this course, you will learn how to design modern multicore-based computers, and how the design choices you make affect performance and energy consumption. You will explore design principles governing modern microprocessors, such as pipelining and cache memories, as well as methods for determining the impact of your design on execution time and energy efficiency.

These skills can make a difference for practicing engineers for the purpose of building highly competitive products. Take, for instance, a smartphone with limited battery capacity. By adding value to end users through new or improved functionality, this can lead to significantly shorter operation time between battery charges, thus utilizing the already limited resources of a smartphone far more efficiently.

With this skillset, you can become an expert in computer system performance and energy efficiency - knowledge that is in high demand when designing computerized embedded products. With trends towards IoT (Internet of Things), autonomous systems and mobile computers, such a skillset will be critical in a career in systems engineering.

This course is derived from a Chalmers senior undergraduate course in computer system design.

  • Design concepts in modern multicore-based computers including processors and memory hierarchies
  • How energy efficient and fast a program will execute
  • How to use simple models to analyze energy efficiency and performance
  • How taught design concepts are used in modern multicore-based computer systems

more_horiz Read more
more_horiz Read less
report_problem

Prerequisite

This course addresses students/professionals with a general understanding of programming computers, but with no prior knowledge of how a computer works.

dns

Syllabus

Week 1: Execution model of computer systems

  • The transformation hierarchy
  • Instruction set architecture
  • Execution stages
  • Control, data paths, and a model of a computer
  • Execution of a program
  • Put it all together

Week 2: Performance and energy models of computers

  • Basic performance model of an executing program
  • Energy and power consumption in computer systems
  • Basic energy model of an executing program
  • How performance and energy can be improved
  • Reporting performance and energy
  • Put it all together

Week 3: Pipelining principles

  • The principle of the conveyor belt – pipelining
  • Instruction level parallelism and its relation to pipelining
  • A pipelined model of a computer
  • Pipeline hazards (structural, data and control)
  • Simple techniques to avoid hazards
  • Put it all together

Week 4: Cache memory hierarchy principles

  • Memory system basics
  • The memory locality principle
  • Basic notion of cache memory and a direct mapped cache
  • Set-associative caches
  • Multi-level caches
  • Put it all together
record_voice_over

Instructors

Per Stenström
Professor, Computer Engineering
Chalmers University of Technology

store

Content Designer

Chalmers University of Technology
Chalmers University of Technology
assistant

Platform

Edx

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

Reviews
5 /5 Average
starstarstarstarstar
1
starstarstarstarstar
0
starstarstarstarstar
0
starstarstarstarstar
0
starstarstarstarstar
0
Content
5/5
Platform
5/5
Animation
5/5
Best Review

Excelente!

Anonymous
Anonymous,
Published on August 30, 2021
You are the designer of this MOOC?
What is your opinion on this resource ?
Content
5/5
Platform
5/5
Animation
5/5
Anonymous,
August 30, 2021
starstarstarstarstar

Excelente!