
Key Information
About the content
Computational thinking is becoming widely recognized as a skill necessary for every educated person in a technologically advanced society.
We will focus on just a subset of computational thinking which concerns creating models of the physical world – something that engineers frequently need to do. Because of that choice, this course covers many topics normally viewed as within the domain of mathematics such as algebra and calculus, but the solution procedures are algorithmic rather than symbolic.
The major themes of the course are:
- Representation -- How do you encode information about the world in a computer? How do your choices in representation affect the ease with which you can solve problems?
- Decomposition -- How do you break a large and diverse problem into many simpler parts?
- Discretization -- How do you break up space and time into a large number of relatively small pieces? What are the alternative ways of doing this? What are the consequences of discretization procedures for accuracy and speed?
- Verification -- How do you build confidence in the results of a model?
- Select and implement methods for interpolation and understand their consequences for convergence of model results as discretization is refined.
- Carry out a few simple methods for numerical integration
- Implement procedures for numerical differentiation
- Write programs to solve systems of equations, both linear and non-linear
Prerequisite
- Algebra
- Calculus
Syllabus
Interpolation (building simple surrogates for more complex functions)
Integration (processes for numerical quadrature)
Randomness (generating and using pseudorandom variables in models)
Differentiation (numerical derivatives)
Solving equations (Gaussian elimination for linear systems, Newton-Raphson for non-linear systems)
Instructors
Daniel Frey
Professor of Mechanical Engineering Department; MIT D-Lab Faculty Research Director
Massachusetts Institute of Technology
Ali Talebinejad
Lecturer of Mechanical Engineering Department
Massachusetts Institute of Technology
Content Designer

MIT is a world-class educational institution where teaching and research — with relevance to the practical world as a guiding principle — continue to be its primary purpose.
MIT is independent, coeducational, and privately endowed. Its five schools and one college encompass numerous academic departments, divisions and degree-granting programs, as well as interdisciplinary centers, laboratories and programs whose work cuts across traditional departmental boundaries.
Platform

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.