
Key Information
About the content
Biomass is the only renewable feedstock which contains the carbon atoms needed to make the molecules to create chemicals, materials and fuels. However, the majority of our current scientific and industrial knowledge on conversion is based on fossil feedstock processing.
Join the MOOC Catalytic Conversions for Biobased Chemicals and Products if you want to advance your career and explore the relevant fundamental knowledge on (bio)catalytic conversionfor producing(new) biobased building blocks, chemicals and products.
The focus on this course is the design of an effective (catalytic) process for the conversions of biobased feedstocks to desired products. Unique for bioconversion is the presence of the elements O, N, P, S and large quantities of water. You will therefore will explore:
- Microbial, biochemical and chemical (i.e., catalytic) conversion routes.
- How to use biocatalysts, home- or heterogeneous catalysts and optimize the process of conversion. Tune catalysts to their specific advantages and disadvantages for biobased conversions.
- The influence of the reactor choice as an inevitable asset in the process.
- How to describe the productivity of catalytic processes depending on the choice of the reactor and how the choice of the reactor can add to the stability of the conversion process.
The knowledge gained in this course will allow you to design processes specifically targeted on biomass based conversions. Learners will also have the opportunity to interact with chemists, engineers and scientists who mainly focus on the traditional fossil-based conversions.
This course is part of the MicroMasters Program in Chemistry and Technology for Sustainability: a series of 3 courses and a final capstone project designed togive you the skills needed tocontribute toand embrace the transition from a fossil-based economy to a biobased one. It's especially valuable to those who have (or ambition to have) a career in industries such as: the (bio)chemical industry, agrifood water companies, energy producers, logistics, and related (non-)governmental organizations.
Explore the other courses in the MicroMasters Program:
- Biorefinery: From Biomass to Building Blocks of Biobased Products
- From Fossil Resources to Biomass: A Business and Economics Perspective
- Capstone Chemistry and Technology - Final project and exam (only available to learners who have obtained verified certificates in all other courses of the MicroMasters programme).
- How to efficiently convert biobased feedstocks into desired products
- To understand, evaluate and design a process based on either homogeneous, heterogeneous or biocatalysts
- Critically evaluate the pros and cons of a biobased conversion route vs a fossil-based conversion route
Prerequisite
The prerequisites are a BSc in technology, engineering (and applied) sciences. You should have at least BSc level knowledge on topics such as chemistry, mathematics and process engineering. Successful completion of Biorefinery: From Biomass to Building Blocks of Biobased Products is advised, but not obligatory.
Syllabus
Module 1: Introduction to Biobased Conversions
This introduction module starts by refreshing your knowledge of the three pillars of this course: chemical conversions, microbial conversions and reactor design. You'll then be introduced to homogeneous and heterogeneous catalysts, learn about anaerobic and aerobic microorganisms and start applying mass balances on different types of reactors.
Module 2: Development and Performance of Catalysts
Here the focus is on the catalyst. You learn how heterogeneous catalysts are synthesised and how a suitable microorganism or mixed culture is selected. It's also important to verify if your conversion has been efficient. You'll therefore learn several methods of how to quantify the performance of your catalyst.
Module 3: Reaction Kinetics in Reactor Design
A perfect catalyst can still give disappointing results if it's not run under ideal conditions. In this module, deactivation processes are central and you will study how to account for them in reaction kinetics. We'll also counter thermal deactivation either by cooling with cold water or by evaporation.
Module 4: Improving Biobased Conversion Processes
In this module, we'll touch upon improving a biobased conversion process. You'll see what tools are useful for the characterisation of your catalyst and we'll touch upon strain engineering. You'll also learn how to determine the limiting factor that impacts your conversion rate. Finally, we will take a closer look at improving conversion rates in heterogeneous catalysts.
Module 5: Exam
It's time to test what you have learned on biobased conversion processes!
Instructors
Harry Bitter
Professor Biobased Chemistry and Technology
Wageningen University & Research
Marian Vermue
Associate Professor, Agrotechnology and Food Sciences
Wageningen University & Research
Content Designer

Platform

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.