Key Information
About the content
In this course you will learn about audio signal processing methodologies that are specific for music and of use in real applications. We focus on the spectral processing techniques of relevance for the description and transformation of sounds, developing the basic theoretical and practical knowledge with which to analyze, synthesize, transform and describe audio signals in the context of music applications. The course is based on open software and content. The demonstrations and programming exercises are done using Python under Ubuntu, and the references and materials for the course come from open online repositories. We are also distributing with open licenses the software and materials developed for the course.
Syllabus
Week 2: Discrete Fourier transform
Week 3: Fourier transform properties
Week 4: Short-time Fourier transform
Week 5: Sinusoidal model
Week 6: Harmonic model
Week 7: Sinusoidal plus residual modeling
Week 8: Sound transformations
Week 9: Sound/music description
Week 10: Concluding topics; beyond audio signal processing
Instructors
Xavier Serra
Full Professor
Dept. of Information and Communication Technologies, UPF
Prof Julius O Smith, III
Professor of Music and (by courtesy) Electrical Engineering
CCRMA
Content Designer

Leland Stanford Junior University, better known as Stanford University, is a private American university located in Silicon Valley, south of San Francisco.
Its motto is "Die Luft der Freiheit weht", which means "The wind of freedom blows".
Ranked among the world's top universities in most international rankings, it enjoys great prestige.
Platform

Coursera is a digital company offering massive open online course founded by computer teachers Andrew Ng and Daphne Koller Stanford University, located in Mountain View, California.
Coursera works with top universities and organizations to make some of their courses available online, and offers courses in many subjects, including: physics, engineering, humanities, medicine, biology, social sciences, mathematics, business, computer science, digital marketing, data science, and other subjects.