Approximation Algorithms Part I
list 5 sequences
assignment Level : Introductive
chat_bubble_outline Language : English
card_giftcard 1 point
Logo My Mooc Business

Top companies choose Edflex to build in-demand career skills.

Get started
Users' reviews
-
starstarstarstarstar

Key Information

credit_card Free access
verified_user Fee-based Certificate

About the content

Approximation algorithms, Part I How efficiently can you pack objects into a minimum number of boxes? How well can you cluster nodes so as to cheaply separate a network into components around a few centers? These are examples of NP-hard combinatorial optimization problems. It is most likely impossible to solve such problems efficiently, so our aim is to give an approximate solution that can be computed in polynomial time and that at the same time has provable guarantees on its cost relative to the optimum. This course assumes knowledge of a standard undergraduate Algorithms course, and particularly emphasizes algorithms that can be designed using linear programming, a favorite and amazingly successful technique in this area. By taking this course, you will be exposed to a range of problems at the foundations of theoretical computer science, and to powerful design and analysis techniques. Upon completion, you will be able to recognize, when faced with a new combinatorial optimization problem, whether it is close to one of a few known basic problems, and will be able to design linear programming relaxations and use randomized rounding to attempt to solve your own problem. The course content and in particular the homework is of a theoretical nature without any programming assignments. This is the first of a two-part course on Approximation Algorithms.

more_horiz Read more
more_horiz Read less
dns

Syllabus

  • Week 1 - Vertex cover and Linear Programming
    We introduce the course topic by a typical example of a basic problem, called Vertex Cover, for which we will design and analyze a state-of-the-art approximation algorithm using two basic techniques, called Linear Programming Relaxation and Rounding. It is a s...
  • Week 2 - Knapsack and Rounding
    This module shows the power of rounding by using it to design a near-optimal solution to another basic problem: the Knapsack problem.
  • Week 3 - Bin Packing, Linear Programming and Rounding
    This module shows the sophistication of rounding by using a clever variant for another basic problem: bin packing. (This is a more advanced module.)
  • Week 4 - Set Cover and Randomized Rounding
    This module introduces a simple and powerful variant of rounding, based on probability: randomized rounding. Its power is applied to another basic problem, the Set Cover problem.
  • Week 5 - Multiway Cut and Randomized Rounding
    This module deepens the understanding of randomized rounding by developing a sophisticated variant and applying it to another basic problem, the Multiway Cut problem. (This is a more advanced module.)
record_voice_over

Instructors

Claire Mathieu

store

Content Designer

École normale supérieure

The École normale supérieure (ENS) is an elite higher education institution (graduate school) for advanced undergraduate and graduate studies, and a prestigious French research center. It encompasses fifteen teaching and research departments, spanning the main humanities, sciences and disciplines. Unique among France’s grandes écoles for its training in the humanities and sciences, the ENS prepares its students for their role as future leaders in every imaginable professional field: in research, media, public service and private industry.

assistant

Platform

Coursera

Coursera is a digital company offering massive open online course founded by computer teachers Andrew Ng and Daphne Koller Stanford University, located in Mountain View, California. 

Coursera works with top universities and organizations to make some of their courses available online, and offers courses in many subjects, including: physics, engineering, humanities, medicine, biology, social sciences, mathematics, business, computer science, digital marketing, data science, and other subjects.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
0/5
Platform
0/5
Animation
0/5