Amazon SageMaker: Simplifying Machine Learning Application Development

Course
en
English
8 h
This content is rated 4.5 out of 5
Source
  • From www.edx.org
Conditions
  • Self-paced
  • Free Access
  • Fee-based Certificate
More info
  • 4 Sequences
  • Intermediate Level

Course details

Syllabus

Welcome to Machine Learning with Amazon SageMaker

  • Course Introduction
    • Welcome to Machine Learning with SageMaker on AWS
    • Course Welcome and Student Information
    • Meet the Instructors
    • Introduce Yourself

Week 1

  • Introduction to Machine Learning with SageMaker on AWS
    • Introduction to Week 1
    • What we we use ML for?
    • Diving Right In
    • What is Amazon SageMaker
  • WeeklyQuiz, Readings, Resources, Discussion
    • Week 1 Notes and Resources
    • Week 1 Quiz
    • Week 1 Discussion

Week 2

  • Amazon SageMaker Notebooks and SDK
    • Introduction to Week 2
  • Amazon SageMaker Notebooks
    • Introduction to Jupyter Notebooks
    • Notebooks and Libraries: Cleaning and Preparing Data
    • Exercise 2.1 Walkthrough
    • Exercise 2.1: Create Your Notebook Instance (Optional)
  • Weekly Quiz, Readings, Resources, Discussion
    • Week 2 Notes and Resources
    • Week 2 Quiz
    • Week 2 Discussion

Week 3

  • Amazon SageMaker Algorithms
    • Introduction to Week 3
  • ML and Amazon SageMaker Terminology
    • SageMaker/ML Terminology and Algorithms
    • Hyperparameter Tuning
  • Amazon SageMaker Algorithms
    • k-means Algorithm Walkthrough
    • Introduction to Exercise 3.1
    • Exercise 3.1: Using the k-means Algorithm (Optional)
    • XGBoost Algorithm Walkthrough (Part 1)
    • XGBoost Algorithm Walkthrough (Part 2)
    • XGBoost Algorithm Walkthrough (Part 3)
    • Introduction to Exercise 3.2
    • Exercise 3.2: Using the XGBoost Algorithm (Optional)
  • Weekly Quiz, Readings, Resources, Discussion
    • Week 3 Notes and Resources
    • Week 3 Quiz
    • Week 3 Discussion

Week 4

  • Application Integration
    • Introduction to Week 4
  • Integrating Amazon SageMaker with your Applications
    • Serverless Recap
    • Exercise 4.1 Walkthrough
    • Exercise 4.1: Python Movie Recommender (Optional)
    • Bring Your Own Models
    • Bringing Your Own Models: MXNet and TensorFlow
  • Weekly Quiz, Readings, Resources, Discussion
    • Week 4 Notes and Resources
    • Week 4 Quiz
    • Class Wrap Up
    • Course Survey
    • Week 4 Discussion
  • End of Course Assessment (Verified Certificate Track Only)

Prerequisite

Instructors

Russell Sayers
Senior Cloud Technologist
Amazon Web Services

Asim Jalis
Senior Technical Trainer
Amazon Web Services

Carl Leonard
Technical Trainer
Amazon Web Services

Editor

Amazon Web Services

Platform

Harvard University, the Massachusetts Institute of Technology, and the University of California, Berkeley, are just some of the schools that you have at your fingertips with EdX. Through massive open online courses (MOOCs) from the world's best universities, you can develop your knowledge in literature, math, history, food and nutrition, and more. These online classes are taught by highly-regarded experts in the field. If you take a class on computer science through Harvard, you may be taught by David J. Malan, a senior lecturer on computer science at Harvard University for the School of Engineering and Applied Sciences. But there's not just one professor - you have access to the entire teaching staff, allowing you to receive feedback on assignments straight from the experts. Pursue a Verified Certificate to document your achievements and use your coursework for job and school applications, promotions, and more. EdX also works with top universities to conduct research, allowing them to learn more about learning. Using their findings, edX is able to provide students with the best and most effective courses, constantly enhancing the student experience.

Complete this resource to write a review