
Key Information
About the content
We will learn computational methods -- algorithms and data structures -- for analyzing DNA sequencing data. We will learn a little about DNA, genomics, and how DNA sequencing is used. We will use Python to implement key algorithms and data structures and to analyze real genomes and DNA sequencing datasets.
Syllabus
- Week 1 - DNA sequencing, strings and matching
This module we begin our exploration of algorithms for analyzing DNA sequencing data. We'll discuss DNA sequencing technology, its past and present, and how it works. - Week 2 - Preprocessing, indexing and approximate matching
In this module, we learn useful and flexible new algorithms for solving the exact and approximate matching problems. We'll start by learning Boyer-Moore, a fast and very widely used algorithm for exact matching - Week 3 - Edit distance, assembly, overlaps
This week we finish our discussion of read alignment by learning about algorithms that solve both the edit distance problem and related biosequence analysis problems, like global and local alignment. - Week 4 - Algorithms for assembly
In the last module we began our discussion of the assembly problem and we saw a couple basic principles behind it. In this module, we'll learn a few ways to solve the alignment problem.
Instructors
Ben Langmead, PhD
Assistant Professor
Computer Science
Jacob Pritt
Department of Computer Science
Content Designer

Platform

Coursera is a digital company offering massive open online course founded by computer teachers Andrew Ng and Daphne Koller Stanford University, located in Mountain View, California.
Coursera works with top universities and organizations to make some of their courses available online, and offers courses in many subjects, including: physics, engineering, humanities, medicine, biology, social sciences, mathematics, business, computer science, digital marketing, data science, and other subjects.