link Source: www.coursera.org
list 6 sequences
assignment Level : Intermediate
label Physics
chat_bubble_outline Language : English
card_giftcard 180 points
Users' reviews
-
starstarstarstarstar
0 reviews

Key Information

credit_card Free access
verified_user Fee-based Certificate
timer 18 hours in total

About the content

Learners might have learned the basic concepts of the acoustics from the ‘Introduction to Acoustics (Part 1).’ Now it is time to apply to the real situation and develop their own acoustical application. Learners will analyze the radiation, scattering, and diffraction phenomenon with the Kirchhoff –Helmholtz Equation. Then learners will design their own reverberation room or ducts that fulfill the condition they have set up.

more_horiz Read more
more_horiz Read less
dns

Syllabus

Week 1. Radiation – Breathing & Trembling Sphere Problem

What happens if we have a certain discontinuity that is a function of three spatial variables (e.g. x,y,z for Cartesian coordinate)?

- What are the radiation characteristics of a breathing sphere, which is assumed to vibrate omni-directionally with equal magnitude?

What is the difference between a breathing sphere and a trembling sphere, which vibrates in a certain direction with a uniform velocity?

Week 2. Radiation – Baffled Piston & Finite Vibrating Plate Problem

How can we generate sound? By the fluctuation of fluid particles or the vibration of structures? How are they related?

How can we understand the radiation of a finite vibrating plate? Can we assume this plate as numerous vibrating pistons?

 Week 3. Scattering & Diffraction / Kirchhoff-Helmholtz Equation

How can we express the wave propagation when it is reflected due to the presence of discontinuities in space?

How can we explain the circumstances under which we can hear sound but cannot see the sound source?

What is the relation between the wavelength and the diffraction?

Week 4. Wave Propagation in Space / Reverberation Period and its Design Application

If there are different types of impedance distribution in space, how can we explain the propagation characteristics?

How can we acoustically define ‘large’ or ‘small’ space’? Is it related to the frequency?

Is there any measure that can represent the characteristics of the space?

Week 5. Wave Propagation in Space / Duct Acoustics

How can we express the sound field that is neither fully diffuse field nor only a direct field?

When the size of the space is small relative to wavelength, what happens to the propagation of sound?

When the length of one direction is significantly greater than the cross-sectional direction of the space, how does the wave propagate with respect to its wavelength?

record_voice_over

Instructors

Yang-Hann Kim
Professor
Mechanical Engineering

store

Content Designer

Korea Advanced Institute of Science and Technology
The Korea Advanced Institute of Science and Technology (KAIST) was established in 1971 by the Korean government as the nation’s first research-intensive graduate school for science, engineering and technology. It has now grown into one of the world’s best universities, delivering top notch education and research programs for undergraduate and graduate students. KAIST encourages interdisciplinary and convergent research across a wide spectrum of disciplines, as well as strong collaborations with industry and global institutions.
assistant

Platform

Coursera

Coursera is a digital company offering massive open online course founded by computer teachers Andrew Ng and Daphne Koller Stanford University, located in Mountain View, California. 

Coursera works with top universities and organizations to make some of their courses available online, and offers courses in many subjects, including: physics, engineering, humanities, medicine, biology, social sciences, mathematics, business, computer science, digital marketing, data science, and other subjects.

You are the designer of this MOOC?
What is your opinion on this resource ?
Content
5/5
Platform
5/5
Animation
5/5